ULTRA-LOW CONTRASTPCI: BASICS AND ROLE OF ADJUNCTIVE MODALITIES

Sudeshna Banerjee, MD, FACC, FSCAL ARCH ELITE Fellows' Program November 19, 2021

• No Conflicts

PCI today

Training

- Should we do it?
- How do we do it?

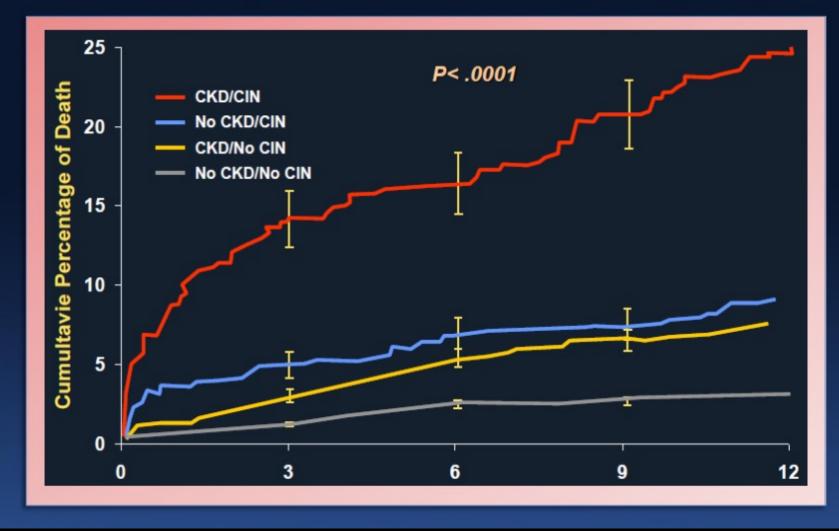
"Real World" PCI

- Appropriate Use
- Quality and Safety

• AKI

- Bleeding
- Mortality

Contrast-Induced Nephropathy


• Definition

 48-72 h after administration of contrast

 Increase in serum creatinine of more than 0.5 or increase of at least 25% from baseline level

 Intra-arterial versus intravenous contrast administration

Morbidity of Contrast Nephropathy

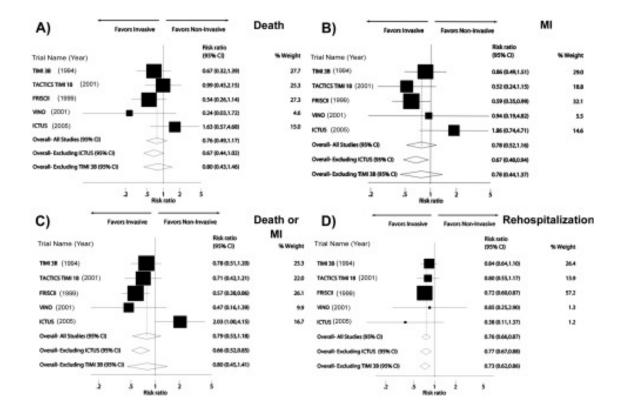
Dangas et al. 2005

CAD and CKD

- Cardiovascular death accounts for OVER 50% of all deaths in patients with CKD and ESRD
- These patients are usually excluded from clinical trials
- Revascularization by PCI in patients with advanced CKD is drastically underutilized

Author	Presentation	Ν	CKD	CKD Invasive	No CKD Invasive
Chertow	MI	57,284	26%	25%	47%
Han	NSTEACS	45,343	14%	48%	74%
Goldenberg	NSTEACS	13,141	32%	50%	68%
Szummer	MI	57,477	33%	33%	58%

eGFR	Strategy	Adjusted OR	Р
60-90	OMT vs PCI	0.63 (0.49-0.81)	<0.001
45-60	OMT vs PCI	0.69 (0.51-0.95)	0.020
30-45	OMT vs PCI	0.68 (0.49-0.94)	0.021
<30	OMT vs PCI	0.80 (0.52-1.24)	0.32


CKD and PCI

Multiple comorbidities

Delays care

Increased morbidity/mortality

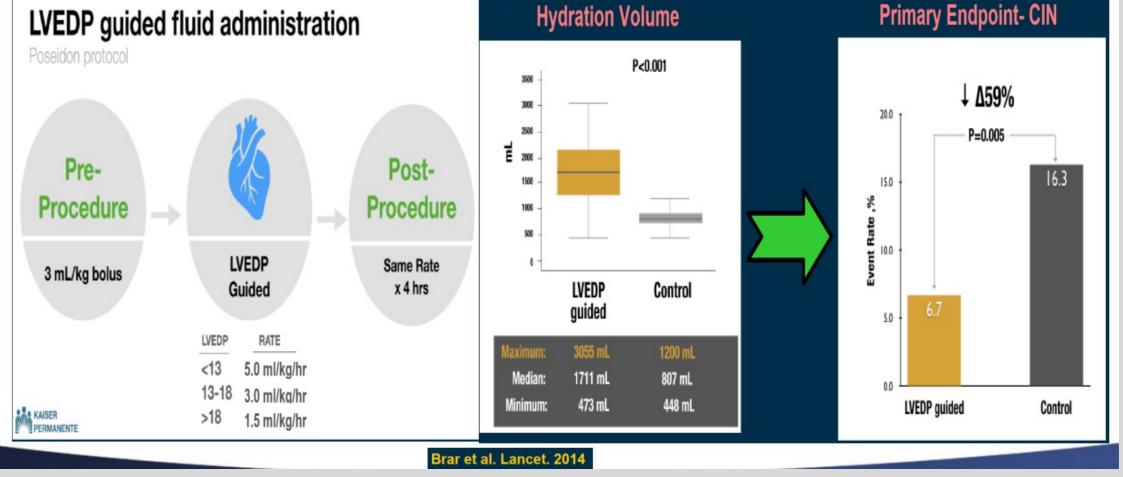
Benefits of PCI in NSTEACS

An Invasive Strategy

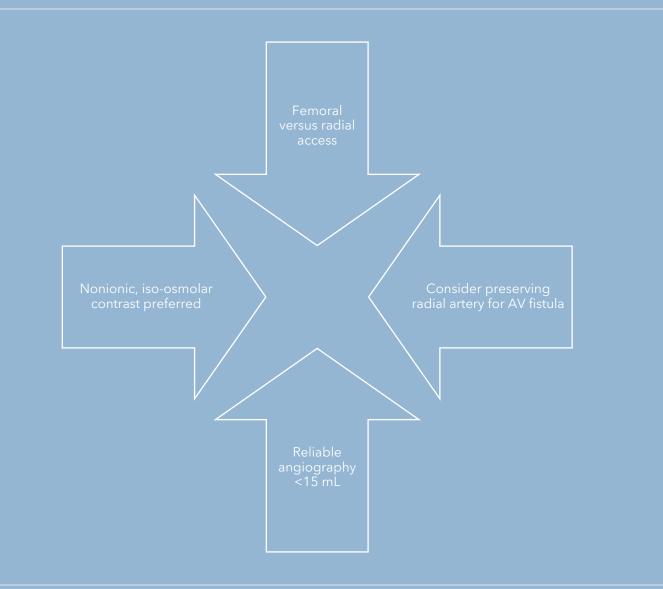
- Significantly reduced the risk for rehospitalization
- Nonsignificant reductions in the risks for death and MI
- Mortality rate was 8.0% in patients with CKD compared with only 3.1% in patients without CKD randomly assigned to conservative therapy in these trials
- The observed *relative* risk reductions likely mean substantially higher *absolute* benefits from an invasive strategy for this group of patients.
- Quantitatively, this suggests that an invasive strategy could prevent up to 20 deaths for every 1000 patients compared with only six deaths prevented in patients without CKD.

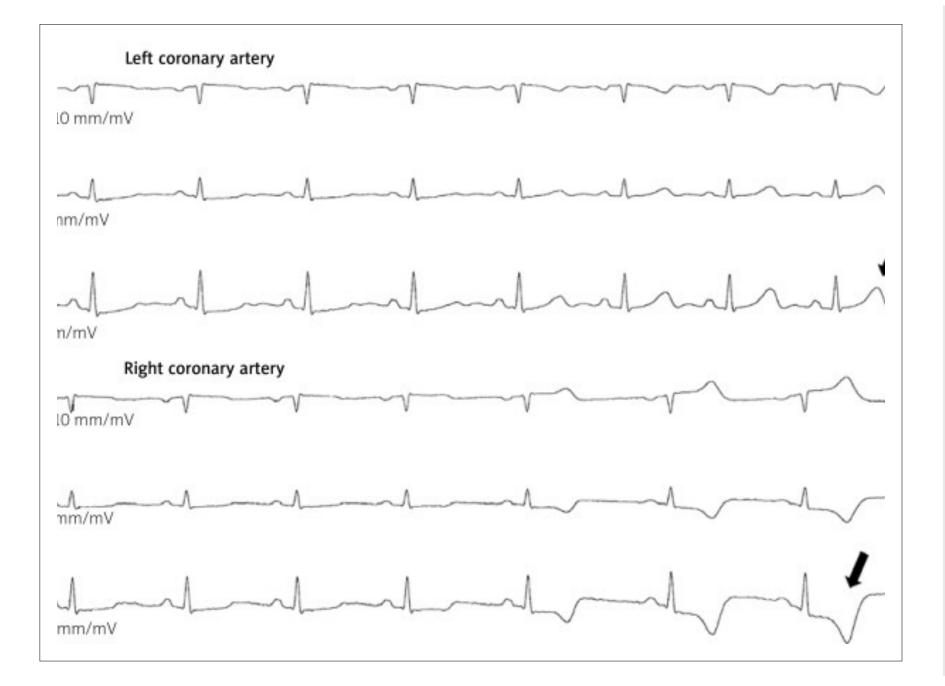
Hydration, hydration, hydration

• Know your "green zone"


 Various calculations to determine safe amount of contrast based on age, weight and creatinine.

- N-acetylcysteine
- Sodium Bicarbonate
- Iso-osmolar contrast


- Contrast Volume = eGFR x 3.7 ml. 2016 SCAI Expert Consensus Statement; 2018 ESC Guidelines on myocardial revascularization
- Contrast Volume = eGFR x 2.5 ml. Circ Cardiovasc Interv. 2015;8:e001859
- Contrast Volume = eGFR x 2.0 ml. Gurm et al. J Am Coll Cardiol, 2011, vol. 58 (pg. 907-914)
- Contrast Volume = eGFR x 1.0 ml. Brown et al. Circ Interv 2010;3:346-350


Hydration

LVEDP guided fluid administration

Basics

CATHETER ENGAGEMENT

- High frame acquisition (30 f/s) to recognize calcium
- Inject 10-20ml of saline and observe temporal ST-changes
- Introduce guidewire
 - Requires heparin
 - Usually only if planning PCI
- Left coronary: 2-3 mL
- Right coronary: 2 mL or less

Fluid Volumes in equipment

Catheter	Catheter alone [ml]	Catheter with manifold [ml]	Catheter with Y connector [ml]
Diagnostic 5 Fr	1.3	1.6	2.6
Diagnostic 6 Fr	1.6	1.9	2.9
Guide 6 Fr	2.6	2.9	3.9
Guide 7 Fr	3.3	3.6	4.6

Since blood flow elutes some contrast from the end of the catheter, the real contrast volume contained in the above systems is approximately 0.5–1.0 ml less. The inner diameters of the catheters were as follows: diagnostic – 0.05" (5 Fr); 0.57" (6 Fr); and guide – 0.71" (6 Fr); 0.081" (7 Fr).

Jerzy Sacha *et al.* Limited contrast use for the prevention of CIN Advances in Interventional Cardiology 2019; 15, 2 (56)

Diagnostic Angiography

- Left Coronary
 - LAO CAUDAL
 - RAO CRANIAL
- Right coronary
 - LAO CRANIAL
- Consider dilution with saline 2:1–may limit visualization
- Biplane angiography
 - Proven to decrease risk of CIN
 - Does not increase radiation

Low Contrast PCI

Anatomical landmarks

- Calcifications within vessels and chest wall
- Overlying ribs
- Diaphragm
- Surgical clips
- Catheter position

Guidewire tip can estimate vessel length

Use IVUS and IVUS "marking:

• Estimate lesion length, vessel diameter and landing zone

"Marking" Wire concept

Final angiography (1-2 mL) excludes:

- Vessel perforation
- Distal embolization

Ultra-Low or Zero Contrast PCI

Table 4

Iodine contrast utilization and procedural characteristics

	Angiography-guided (n=42 pts)	IVUS-guided (n=41 pts)	p-value
Total contrast volume, ml	64.5 (42.8 - 97.0)	20.0 (12.5 - 30.0)	<0.001
Volume of contrast per stent implanted, ml	40.5 (25.7 - 48.3)	13.0 (7.1 – 20.0)	<0.001
Contrast volume/creat. clearance ratio	1.0 (0.6 - 1.9)	0.4 (0.2 - 0.6)	<0.001
Contrast volume/creat. clearance ratio >2	19.0	4.9	0.09
Procedure time, min	34.0 (18.5 - 54.5)	48.0 (34.0 - 61.0)	0.006
Fluoroscopic time, min	12.2 (6.8 - 24.1)	12.2 (8.4 - 20.8)	0.5
Number of cine runs	22.5 (16.0 - 36.3)	25.0 (19.0 - 32.5)	0.5
Cumulative DAP, Gy \times cm ²	82.1 (54.5 - 132.0)	73.7 (44.8 – 118.3)	0.4
Cumulative air Kerma, Gy	1.4(1.0-2.7)	1.4(1.0-2.0)	0.3

*Primary endpoint

Numbers are percentage or median (interquartile range)

Creat. = creatinine; DAP=dose-area product

	Angiography-guided (n=42 pts)	IVUS-guided (n=41 pts)	p- value
In hospital	F/	P /	
Death	0	0	-
Acute myocardial infarction [†]	4.8	4.9	>0.9
Unplanned revascularization	0	0	-
Stent thrombosis	0	0	-

Table 5

m2

Death	0	0	-	
Acute myocardial infarction [†]	4.8	4.9	>0.9	
Unplanned revascularization	0	0	-	
Stent thrombosis	0	0	-	
CK-MB rise > 5X ULN	11.9	14.6	0.8	
CK-MB peak, ng/ml	2.4 (1.3 - 3.7)	2.5 (1.1 – 9.4)	0.5	
Peak serum creatinine, mg/dl	1.2 (1.0 – 1.5)	1.3 (1.0 - 1.6)	0.4	
Lowest creatinine clearance, ml/min/1.73	61.9 (43.8 - 79.1)	51.4 (40.5 - 72.9)	0.3	
m2				
Peak rise in creatinine > 0.5 mg/d1	19.0	7.3	0.2	
4-month post-discharge				
Death	0	4.2	0.3	
Acute myocardial infarction [‡]	3.3	4.2	>0.9	
Unplanned revascularization	11.7	4.2	0.3	
Stent thrombosis	0	0	-	
Any event	11.7	4.2	0.3	

Numbers are percentage or medianinterquartile interval) CKMB = creatine kinase-MB; URL = upper reference limit *Kaplan-Meier estimates TAIL post-PCI [‡]All spontaneous

IVUS: the **MOZART** Trial

- 83 patient assigned to angiography or **IVUS-guided PCI**
- Demonstrated safety and significant decrease in contrast
- No hard endpoints
- Relatively good renal function
- No clinical benefit

Primary endpoint	Angiography- guided (n=42)	IVUS-guided (n=41)	Р
Total contrast volume, ml	71.4 ± 35.9	22.9 ± 12.5	<0.001

EHJ BRIEF COMMUNICATION Interventional cardiology

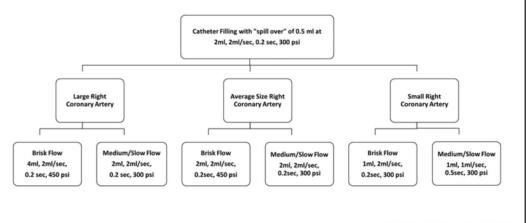
Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study

Ziad A. Ali^{1,2*}, Keyvan Karimi Galougahi¹, Tamim Nazif^{1,2}, Akiko Maehara^{1,2}, Mark A. Hardy³, David J. Cohen⁴, Lloyd E. Ratner³, Michael B. Collins^{1,2}, Jeffrey W. Moses^{1,2}, Ajay J. Kirtane^{1,2}, Gregg W. Stone^{1,2}, Dimitri Karmpaliotis^{1,2}, and Martin B. Leon^{1,2}

¹Division of Cardiology, Center for Interventional Vascular Therapy, New York Presbyterian Hospital and Columbia University, New York, NY, USA, ²Cardiovascular Research Foundation, New York, NY, USA: ³Department of Surgery, New York Presbyterian Hospital and Columbia University, New York, NY, USA; and ⁴Division of Nephrology, New York, Presbyterian Hospital and Columbia University, New York, NY, USA

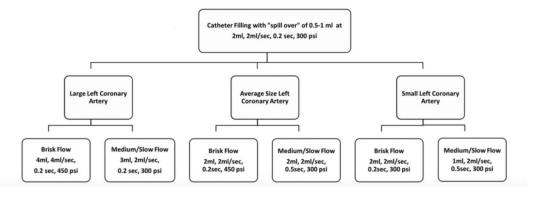
Received 21 December 2015; revised 10 January 2016; accepted 3 February 2016

PCI, physiology, IVUS, and follow-up data


P	Procedure time (min)	72 [61, 119]	
Fluoroscopy time (min)		20 [16, 35]	
Radiation dose (mGy)		1154 [538, 1	1932]
F	ollow-up (days)	79 [33, 207]	1
F	follow-up eGFR (mL/min/1.73 m ²)	18 [14, 22]	
C	Change in eGFR (mL/min/1.73 m ²)	-0.2 [-1.4	, 1.8]
10.01			
	Renal replacement therapy	0 (0)	
	Stent thrombosis	0 (0)	
	Revascularization	0 (0)	
	MI	0 (0)	
	Death	0 (0)	
۰.			

Zero-contrast PCI

- No patient received contrast during PCI
- Combination of intravascular ultrasound and physiology
- Diagnostic angiography completed at least 7 days prior


Goal: Contrast Volume/eGFR <1

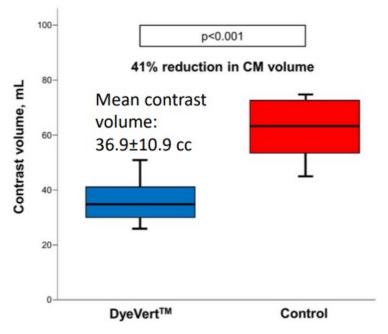
Ultra-low contrast delivery technique Right coronary artery automatic injector algorithm

Stys a, et al. Feb 2011. Adv in Interv Cardiol 1(1):8-14

Ultra-low contrast delivery technique Left coronary artery automatic injector algorithm

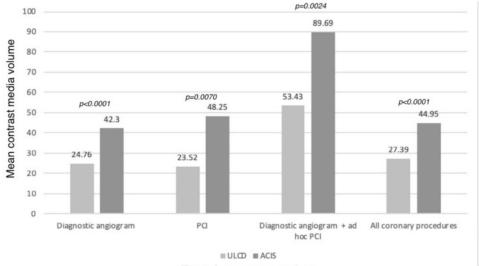
Stys a, et al. Feb 2011. Adv in Interv Cardiol 1(1):8-14

Impact of a novel contrast reduction system on contrast savings in coronary angiography – The DyeVert randomised controlled trial

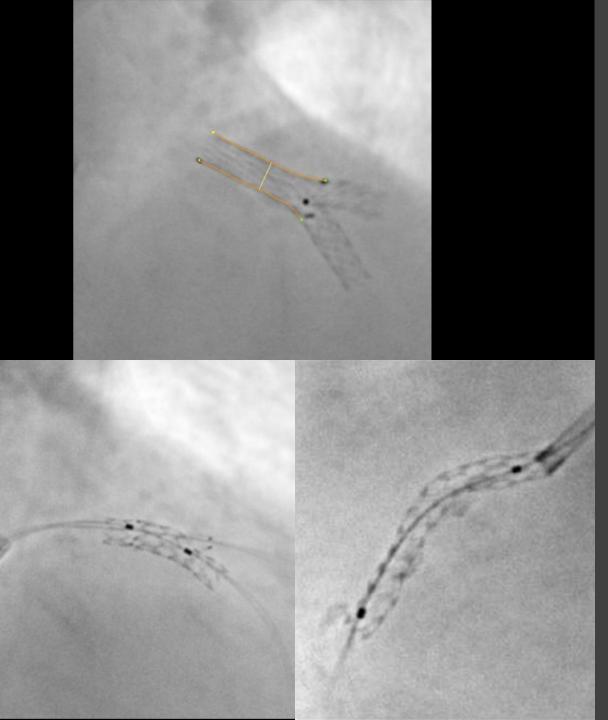


Steffen Desch^{a,b,c,*,1}, Georg Fuernau^{b,c,1}, Janine Pöss^{b,c,1}, Roza Meyer-Saraei^{b,c,1}, Mohammed Saad^{b,c,1}, Ingo Eitel^{b,c,1}, Holger Thiele^{a,1}, Suzanne de Waha^{b,c,1}

Table 1

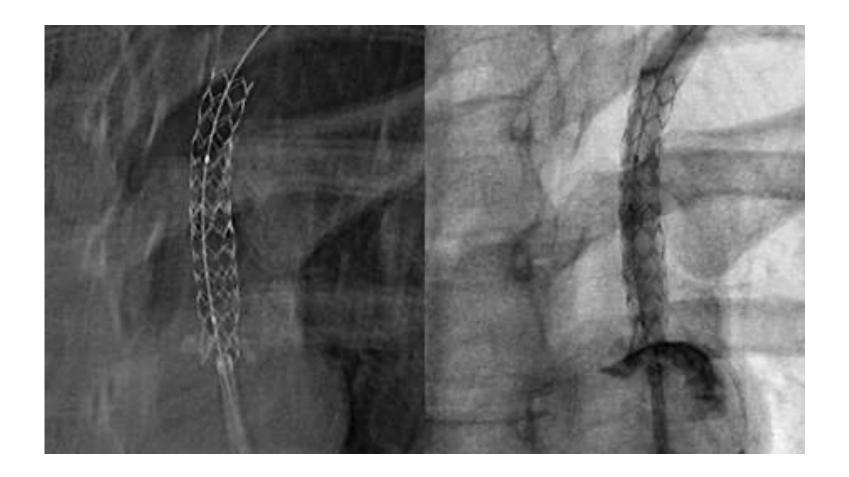

Baseline characteristics.

	$\frac{\text{DyeVert}^{\text{TM}}}{(n=48)}$	Control	P-Value
		(n = 48)	
Age (years)	68.6 ± 13.6	66.2 ± 12.8	0.39
Male gender, n (%)	28 (58.3)	28 (58.3)	1.00
BMI (kg/m ²)	28.9 ± 6.6	28.0 ± 4.3	0.46
Known coronary artery disease, n (%)	15 (31.3)	17 (35.4)	0.83
Prior PCI, n (%)	11 (22.9)	13 (27.1)	0.81
Congestive heart failure, n (%)	20 (41.7)	19 (39.6)	1.00
NYHA I, n (%)	0(0)	0(0)	0.09
NYHA II, n (%)	4 (20.0)	9 (47.4)	
NYHA III, n (%)	15 (75.0)	8 (42.1)	
NYHA IV, n (%)	1 (5.0)	1 (5.3)	
No information, n (%)	0(0)	1 (5.3)	
Known peripheral artery disease, n (%)	8 (16.7)	8 (16.7)	1.00
Arterial hypertension, n (%)	35 (72.9)	34 (70.8)	1.00
Diabetes mellitus, n (%)	6 (12.5)	8 (16.7)	0.77
Chronic kidney disease, n (%)	33 (68.8)	37 (77.1)	0.49
Stage 1, n (%)	5 (15.2)	0(0)	0.008
Stage 2, n (%)	14 (42.4)	25 (67.6)	
Stage 3, n (%)	11 (33.3)	8 (21.6)	
Stage 4, n (%)	3 (9.1)	1 (2.7)	
Stage 5, n (%)	0(0)	3 (8.1)	
Anaemia, n (%)	5 (10.4)	8 (16.7)	0.55


Desch et al, Int J Cardiol. 2018 Apr 15;257:50-53.

Contrast volume per patient using ULCD technique vs. ACIST

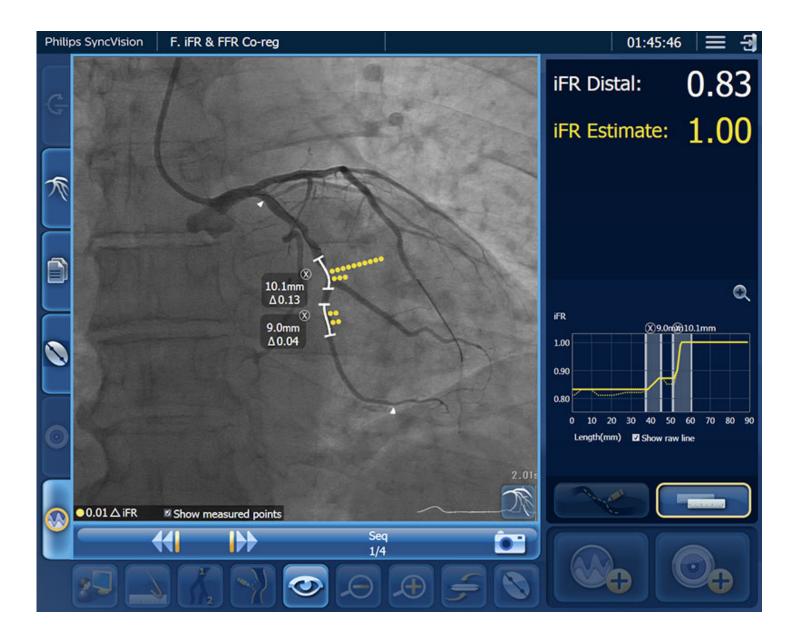
Type of coronary procedure


DYEVERT

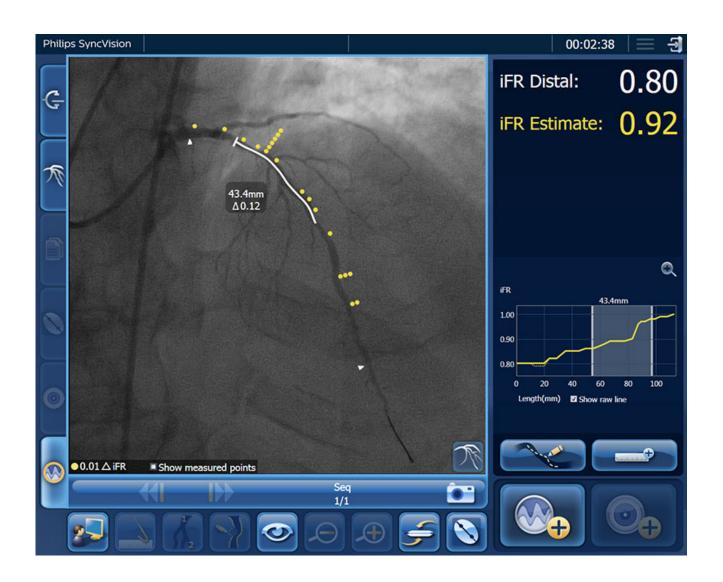
STENT BOOST

- Noninvasive
- ∘ Fast
- Enhances the stent
- Fades out the background
- Allows for precise positioning
- Automatic detection of balloon markers

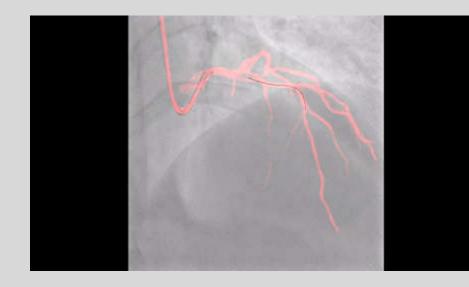
Philips image on file

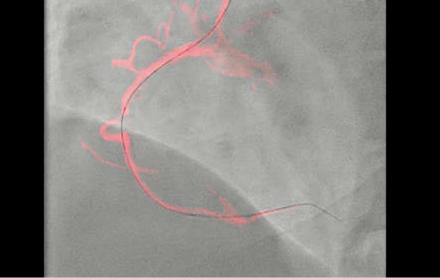


- Stent Boost Subtraction
 - Image in relation to vessel wall
 - Especially useful for bifurcation and ostial stenting
- Stent Boost Live
 - \circ $\,$ Rotation of images $\,$
 - Zoom and integrate content

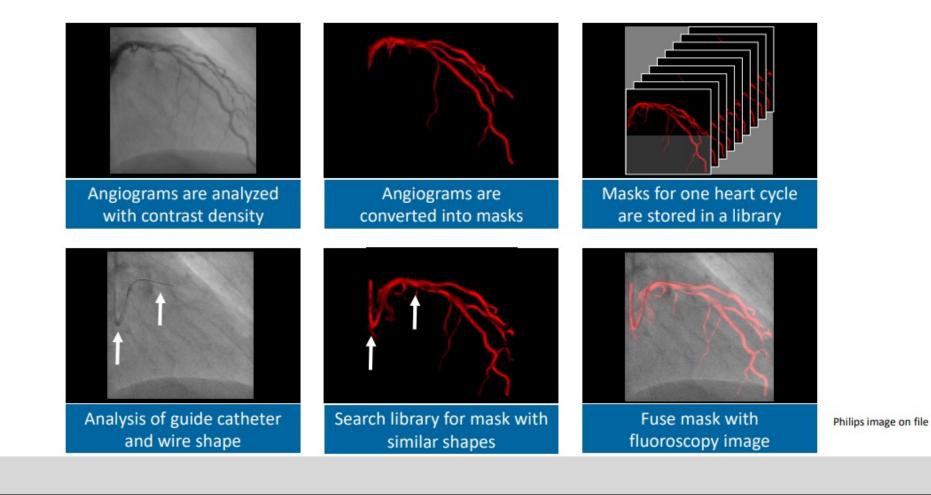

Co-Registration

- Various techniques
- Newer IVUS and OCT platforms are providing this information
- iFR Co-registration: estimate the physiologic impact of a virtual stent





CO-REGISTRATION DIFFUSE DISEASE

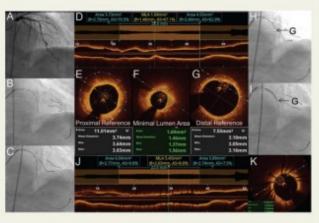

Dynamic Coronary Roadmap

- Real-time, automatic imaging
- Motion-compensated
- Integrated
- Does not change workflow

Dynamic Coronary Roadmap – Technology

CARDIOVASCULAR FLASHLIGHT

doi:10.1093/eurheartij/ehv667 Online publish-ahead-of-print 18 December 2015


Optical coherence tomography-guided percutaneous coronary intervention in pre-terminal chronic kidney disease with no radio-contrast administration

Keyvan Karimi Galougahi^{1,2}, Adrian Zalewski¹, Martin B. Leon^{1,3}, Dimitri Karmpaliotis^{1,3}, and Ziad A. Ali^{1,3}

¹Division of Cardiology, Center for Interventional Vascular Therapy, New York Presbyterian Hospital and Columbia University, New York, NY, USA; ²Sydney Medical School Foundation, University of Sydney, Australia; and ³Cardiovascular Research Foundation, New York, NY, USA

* Corresponding author. Tel: +1 212 3057060, Email: zaa2112@columbia.edu

A 67-year-old man with advanced chronic kidney disease (CKD) (creatinine = 4.5 mg/dL, eGFR = 13 mL/min/1.73 m²) not requiring haemodialysis presented with progressive angina. Diagnostic angiography with ultra-low radio-contrast volume (12 mL, contrast volume/eGFR ratio <1) revealed significant stenosis in the left anterior descending (LAD) artery (Panel A). The lesion was haemodynamically significant (fractional flow reserve: 0.77). Post-angiography, the renal function remained stable. A staged percutaneous coronary intervention (PCI) was performed without utilizing radio-contrast medium. Previous angiographic images were used to guide catheter engagement and guidewire placement in the LAD and diagonal arteries, thus creating a metallic silhouette of the artery (Panel B). Repeat physio-

logical assessment confirmed haemodynamic significance [FFR: 0.78, coronary flow reserve (CFR): 1.4]. Optical coherence tomography (OCT) with angiographic co-registration (Optisl, St Jude Medical, MA) was performed using a mixture of saline and colloid infusate to displace blood (*Panels C and D*). Proximal (*Panel E*) and distal (*Panel G*) reference diameters determined by measuring the distance between respective external elastic laminae and minimal luminal area (*Panel F*) were used for selection of the pre-dilation balloon and stent sizes. An automated angiographic co-registered OCT pullback was used to guide the PCI (*Panels H* and *I*, *G*: distal reference = white bar). Co-registered OCT was repeated to determine minimal stent area (*Panels J* and *K*) and to guide post-dilation. Post-procedure FFR improved to 0.93 and CFR to 3.0. Post-PCI renal function remained stable. This case highlights the feasibility of radio-contrast free OCT-angiographic co-registration guided PCI to prevent contrast-induced nephropathy and requirement for renal replacement therapy in selected extremely high-risk patients with near end-stage CKD.

Conflict of interest: D.K. has served as a speaker or a member of the speaker's bureau for Abbott Vascular, Boston Scientific and Medtronic. Z.A.A. is a speaker for and holds grant support from St Jude Medical.

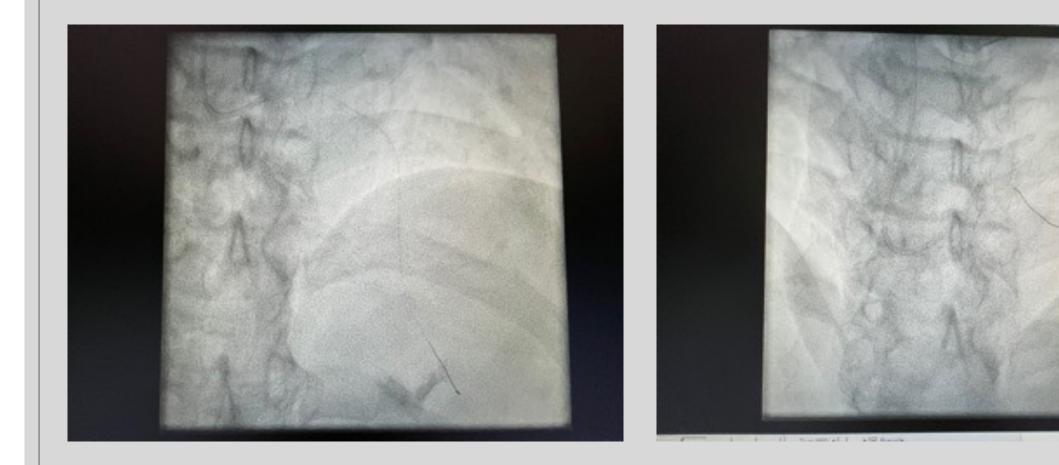
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

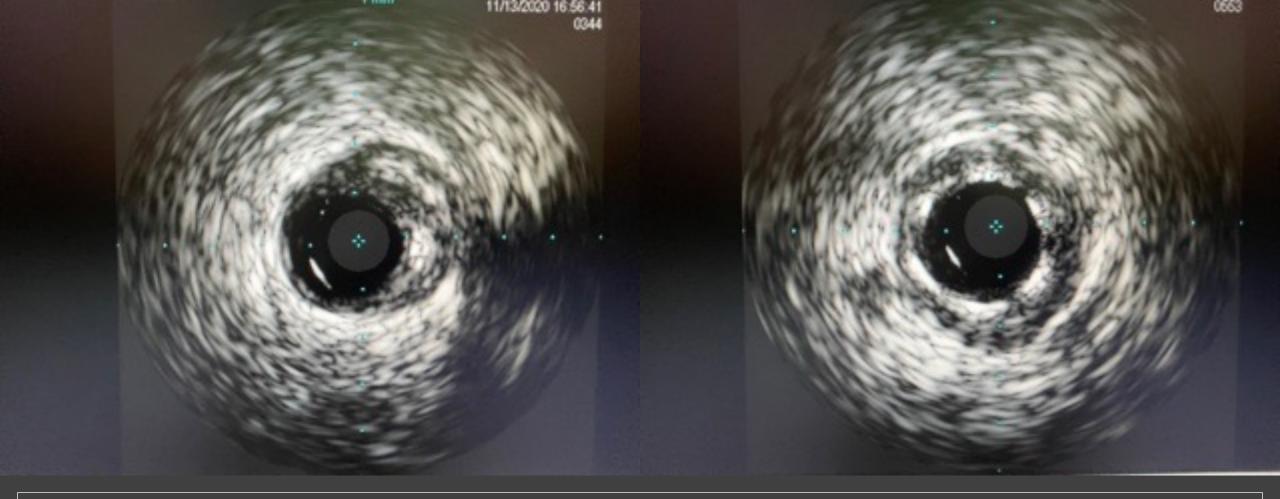

OCT

- Few Reports
- Co-Registration
- Automatic measures
- Non-contrast Solutions
 - Normal Saline
 - Low molecular weight dextran-40

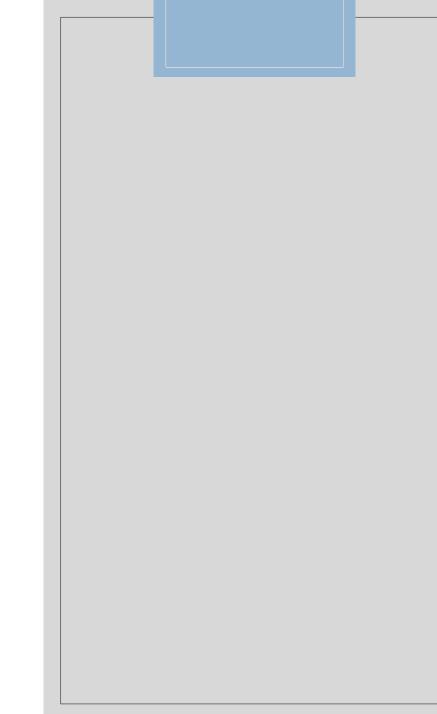
JF 53 year-old with accelerating angina

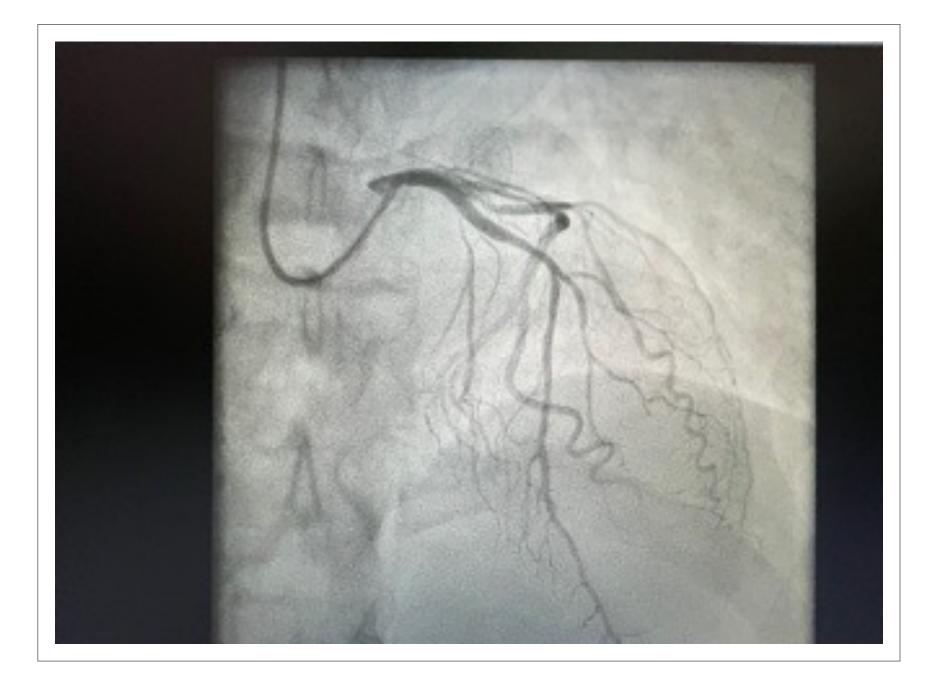
• Hx Anterior STEMI, PCI to LAD


- Known OM disease
- Ischemic cardiomyopathy, LVEF 45%
- Hypertension
- Dyslipidemia
- Diabetes Mellitus
- CKD with creatinine 2.5 and calculated creatinine clearance 26 mL/min
 - Followed by nephrology

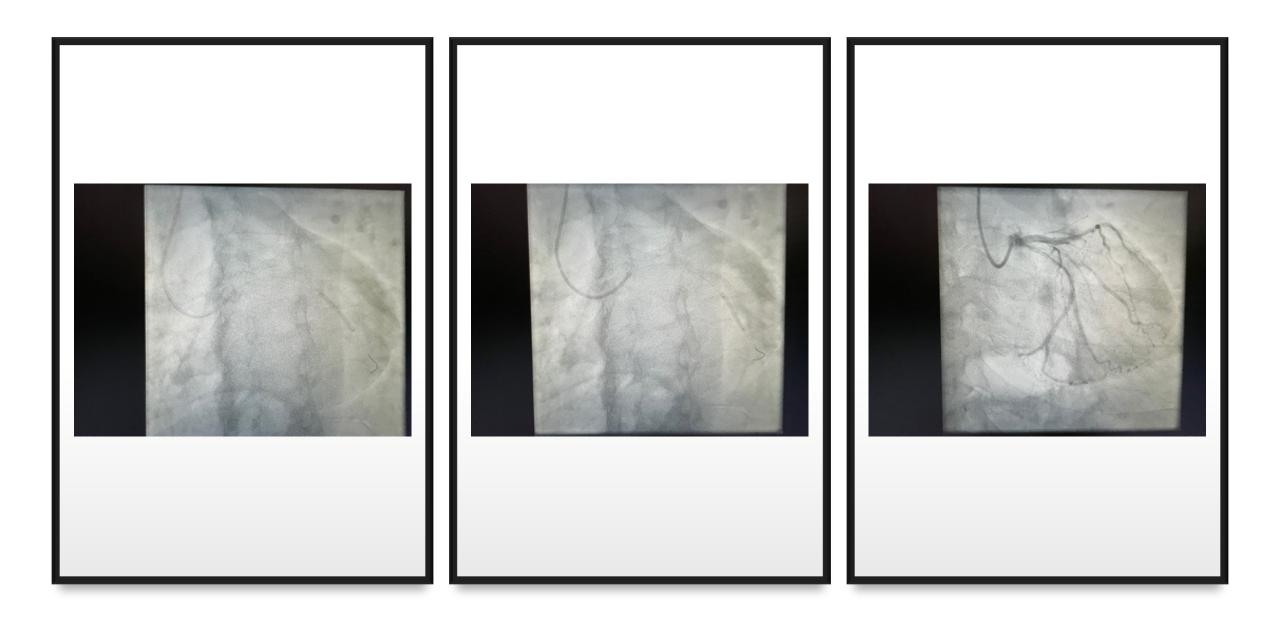

- Proximal LAD disease
- T wave inversions anteriorly
- Decision to proceed with physiology

IVUS/IVUS MARKING



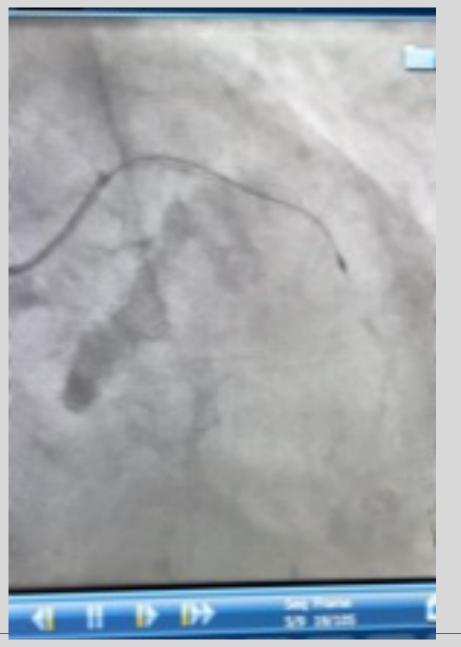

STENT UNDEREXPANSION

STENT BOOST



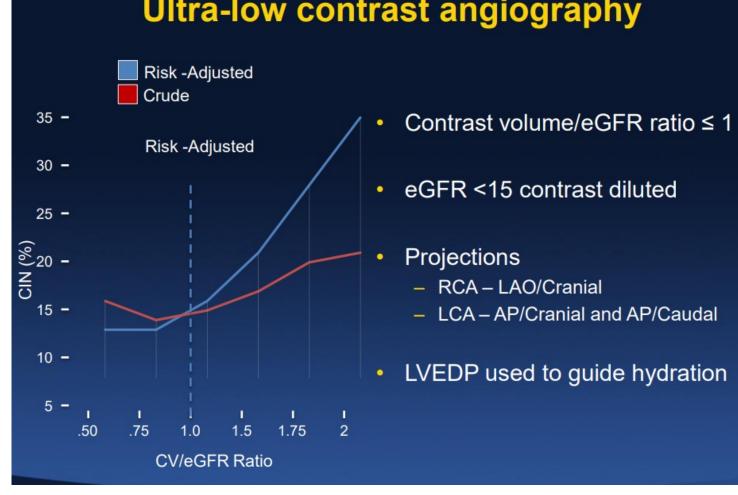
RESULTS

- Total contrast 19 cc
- Creatinine one week later 2.7
- Remains angina free one year later



85 year old with NSTEMI

- DM
- HTN
- HF, EF 35%
- Repeat admission
- Failed medical therapy
- GFR 19



Post-procedure

- Final contrast total 7 cc
- Creatinine remained stable
- Angina-free
- No readmissions since PCI

Ultra-low contrast angiography

Summary

- Implement in daily practice
- Almost all interventional techniques can be used
- Monitor hemodynamics
- Benefits of Early invasive strategy are preserved in patients with CKD

QUESTIONS?

Thank you